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Expressions are obtained for the limiting behavior of ensemble expectations, as
functions of coverage, of the number of simultaneous occurrences of various
structures when indistinguishable single particles are arranged on a two-
dimensional lattice. For the general expressions obtained no restrictions are
placed on the geometrical nature of the lattice. Averages for specific geometri-
cal arrays, such as rectangular and hexagonal arrays, may be calculated directly
from the general results.

1. INTRODUCTION

The treatment of gas—solid adsorption in statistical mechanics re-
quires a consideration of structures on two-dimensional lattices. Specific
structures have been examined in previous studies. In the present paper a
more general approach is pursued and the following question investigated:

What is the ensemble expectation, as a function of coverage, of the
number of simultaneous occurrences of various -structures when indis-
tinguishable single particles are distributed on a lattice?

The model assumed for the adsorbent surface is that of a lattice A
with a fixed number N of sites. Adsorption occurs as indistinguishable
single particles of a classical gas of a single chemical species collide with
and are bound to the sites of the lattice. Each site accommodates exactly
one adsorbed particle and adsorbate particles are found on the lattice only
at the sites.

2. ENSEMBLE EXPECTATIONS

2.1. Definitions. A /lattice A is here taken to be a collection of N
subsets of the usual Cartesian plane. The elements of the collection are
called cells or sites. An array is a lattice together with a particular
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geometrical arrangement of the sites. For example, an RX Q rectangular
array is a lattice of cardinality N =RQ whose elements are small rectangles
which are arranged in R rows and Q columns to form a larger rectangle. In
the following discussion we shall assume, for the sake of simplicity, that R
is never equal to Q.

The set of all subsets of a lattice may be partitioned by the equiva-
lence relation of congruence. A structure Z is taken to be any one of these
disjoint equivalence classes. All elements of a structure have the same
cardinality, which will be denoted by ny. As an example, an r X g rectangu-
lar structure £ on an RXQ rectangular array is that structure whose
elements form rectangles with r rows and ¢ columns or with ¢ rows and r
columns. Miyazaki has shown that in this case the cardinality of Z,
denoted by »(X), is given by

(R=—r+1){Q—g+1)+(R—g+1)}(Q—r+1) if r#£q
(R—r+1)(Q—r+1) ifr=q

(2.1)

Suppose that m particles have been distributed on the lattice A. The
structure ¥ is said to occur with occupancy « in this distribution of
particles if « of the m particles are distributed on the sites belonging to any
one element of 2. For example, on an R X Q rectangular array a nearest-
neighbor pair occurs whenever a 1X2 rectangular structure occurs with
occupancy a=2.

The set of configurations of two structures, 2, and Z,, is the set Uy 5,
defined by

|

Us, s,={7=0,U0,: 6,EZ  and 0, €Z,}

The set of configurations of two structures need not itself be a structure on
the lattice A; however, Uy s may be partitioned into subsets of distinct
cardinalities. In particular, let I' denote the set of those configurations
having cardinality ny +ny , and let I be the complement of I' in Uy 5.
The elements of T" are called nonoverlapping, while those of I are said to
be overlapping. In general, we will say that subsets o, in 2, and o, in X, are
nonoverlapping if their union o, Uag, lies in T’ and are overlapping if their
union lies in I". Note that if n_ denotes the cardinality of an arbitrary
element 7 in Uy s then n,=ny +ny for rin I'; otherwise, n, is strictly
less than the sum ny +ny . Note also that the cardinality of T’ which we
shall denote by v(I"), must be less than Nnzns..

Two structures, X, and Z,, are said fo occur simultaneously with
occupancies «, and a,, respectively, in a distribution of m particles on the
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lattice if there is a configuration =0, Uo, such that a, of the sites of o, are
occupied and «, of the sites of g, are occupied. In this case the two
structures are said to occur simultaneously in the configuration 7. For the
remaining part of this paper the phrase “with occupancies a; and a,” will
be omitted, as in this last definition, whenever the condition is clearly
implied by the context. Let the number of sites of the configuration 7 that
are occupied in the distribution be denoted by «,. If 7 is an element of T',
then a, =a, +a,; otherwise, a_ may be either less than or equal to the sum
a; +a,.

The extension of the above definitions to the set of configurations of /
structures, 2,,...,2%;, and to the simultaneous occurrence of structures
3,5--.» 2; with occupancies &, ..., a; is straightforward.

The configurational ensemble S,,(A) for the distribution of m particles
on a lattice A of cardinality N is a set of duplicates of A, each with a
different distribution of the m particles among the N sites. The cardinality
of §,(A) is (,’X ) We may consequently consider &, (A) as a sample space
whose points are each assigned the equal a priori probability (j ) -1

For each element of §,,(A), the expected number of particles at any
site is m/N. This result may be calculated as an ensemble average per site
in the following way. The number of times a fixed site occurs occupied in
the ensemble is the number of arrangements of the remaining m—1
particles among the remaining N —1 sites. Since there are N single sites on
the lattice, the ensemble average per site is given by

IRAR NG

m—1
Moo ()
m m

The ensemble average (2.2) may be generalized to the ensemble
expectation of the number of simultaneous occurrences of / structures
2., 2, with occupancies «,..., «,;, respectively. The generalization is
expedited by the introduction of certain random variables. The variable
X3, .. =, 1s taken to be that random variable which assumes the value 1 on
those elements of the ensemble for which X,,..., 2, occur simultaneously
in the configuration 7 and the value zero otherwise. The total number of

simultaneous occurrences of Z,,..., Z, is then given by the random varia-
ble

— T
Xy = EXZ,,..A,Z,
T

where the summation ranges over the set Uy 3 of all configurations.
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We now consider the total number of simultaneous occurrences
throughout the entire ensemble of structures 2,,..., 2, in the configuration
7. If 7 is a nonoverlapping configuration, then «_is well defined: «, =
a, + -+ - +a;. Moreover, if r=0,U0, U - - - Uo,, then exactly «, of the sites
of o, must be occupied, exactly a, of the sites of o, must be occupied, and
so on. The number C, of ways of arranging «, of the m particles in  and
m—a«, of the particles on the remaining sites of A is therefore

l
N — n
C,=( n*) 1 ( E"), el
m_aT k=1 ak

Note that C, is the same for all configurations + in I'. We will denote this
value by Cy. If 7 is an element of I, on the other hand, «, may take on a
range of values so that C_ may be written as a sum of terms each less than
or equal to Cp. Since there can be no more than 27z *"s* " *75,7 % gych
terms, we therefore obtain

C—r <2n21+n22+-.-+n2’—n,’cr’ TEF/

The expected number of simultaneous occurrences of Z,,...,Z%, is
given by

B(Xs,.2)=2(})

where the summation ranges over the set of all configurations. When 7 is
an element of T, each term Cp.(¥) ™' is an element of the multihypergeo-
!

metric distribution:
()nte) g (e )(s)
o \m—a, a o Q
_ H 1+ k—1 k (2.3)
(N) 5 ng +-cc +ng,
m o+ +a,
The mean gy 3 of the random variable Yy s =N “’le ,x, 1s the

density of simultaneous occurrences of Zpe- 2 ; per I-tuple of lattice sites,
and is therefore the ensemble expectation whlch generalizes (2.2):

#z,,...,z,=N“1E(Xz,,..,,>:,)

-Ev () e
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The task now at hand is the evaluation of the limit of py 5 asm

and N each becomes large in such a way that the coverage §=m/N
remains constant. This limit will be denoted by a plain limit symbol:

2.2. Computation of Ensemble Expectations. We first consider the case
/=2 and 2, #Z,. Since the set {I', I} forms a partition of Uy 5, we have

By, s,= EFCT(%)_I*' > C-r(,],\:)_l

Tel”

The second term may be estimated by recalling that each element of the
multihypergeometric distribution has magnitude less than unity, so that

-1
lim[N’z > (M) Flim[z\r—z > 2"2,*"22""1}

(rer) (r€I)
2"+ lim[ N ~2(I7) ]
<25 +"221im[ N~ lnzlngz]
=0

Thus

o] n 3 )]

(rel)

For 7€, n,=ny +ny and a, =a, +a,; therefore
=1 o NY Y = [ =\ N —ng, —n5,
H}:,,zz(ﬂ)—hm[N (m) ( o )( o, )( m—a —at, »(T)
where »(I') is the cardinality of T'. On the other hand
—-1{ R 143 — —
hm[N'-Z(N) ( 2l)( 22)(N nE] nEz),,(I"):l:O
m al 0(2 m—al —az

Let the cardinality of the set Us z, of configurations be denoted by
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»(Us, 5,)- Then since cardinality is an additive set function on finite sets,
=1 S NY Y=\ [P [ N—ng, — s
‘u'zlrzz(a)—hm[N (m) ( o )( Qy m—a:—azz V(Uzhzz)

»(Us, 5,) J

o Oy N2

n n
=( 21)( 22)0al+a2(1_0)nzl+n):2—a,—azlim

(2.4)

When A is an array and 3, and X, are structures on A, the evaluation
of the limit in (2.4) is made possible by the following results.

Theorem 1. If 2,#%,, then im[N ~?»(Uy 5 )]=Hm[N ~?»(Z, X
2yl

Proof. We first introduce some notation. Recall that T is the set of
nonoverlapping elements of Uy y, and I is the complement of T' in
Us s, Define T, to be that set of ordered pairs (0y, 0,) with 2, in 6, and o,
in 2,, such that 6, Ug, is an element of I'. Let I} be the complement of I,
in 2, X3,.

Since A is an array, the perimeter of any subset of A is well defined;
moreover, since each structure is a congruence class, each element of the
structure has the same perimeter, which we shall denote by s5. Let Q be
that subset of I' whose elements have perimeters less than sy +s5 . 2 is
called the set of contiguous elements of Uy s . As above let {2, be that set
of ordered pairs (6,,0,) in I, such that o, U, is an element of 2. Subsets
o;in 2, and 3, are also called contiguous if their union ¢, U o, lies in §. It
follows that the correspondence from (2, X Z,)\I', U2, ) onto '\ defined
by (o0, 0,)—0, U0,, is onto and one-to-one.

The existence of a bijection between (=, X Z,)\(IT, UR,) and I'"\Q
implies that the cardinalities of the two sets are the same:

(2 X2\ UQ,) [ =(T\Q)
Therefore
r(Z;XZ2,)—2(T)=w(R,) +v(I7)—»(R)

<v(Q,)+»(T})
The cardinalities of Q, and T’/ have the upper bounds:

r(2,)< max[ sy s v(Z), szznzzv(zz)]

»(I})< max[ nynsv(Z)), ”zl”zz”(zz)]



Ensemble Expectations 85
It now follows that
lim[ N "2p(2,XZ,)—N ~2(I') ] =0
Equivalently we may write
lim[ N ~2(Z, X2,) ] =lim[ ¥ ~2(T) | =lim[ N (Vs ;)|

Now the cardinality of the Cartesian product of finite sets is the
product of their respective cardinalities. Thus

nlnz o +a ny +ny —a;—0y1: r(Z . V(E)
Mz,,zz(0)=( a}j )( 0‘22 )0 1te(]—g)TmT T 2hm[ (N')Jhm[ N2 }

When A is an R X Q rectangular array with =, an r, X ¢, (r, #4q,) rectangu-
lar structure and 2, an r, Xg, (r, #¢q,) rectangular structure, application
of (2.1) yields that, as R and Q both become large and as the ratio
m/RQ =0 remains constant,

q rq a +a F\g1T7rg —oy —ay
a2 (O) =4 )32 g v (1 gy

Note that here the two-point average depends only on the element cardi-
nalities and occupancies of the structures involved.

The general formula for py 5 (#) may be determined by following
a similar line of reasoning to obtain the smoothed /-point average for
structures 2,,..., 2; occurring simultaneously with occupancies «;,..., a;,
respectively:

ns L0 7 W
“2] ’’’’’ 2[(0):((11 )...(al)a 1+ +o;

)t - > =
X (1 _0)("):1 ap+ +("z, al)liml: V(Nl) :I‘ . llm[ V(NI) :|

(2.5)

In the case of a rectangular lattice with rectangular structures Z,,..., 2, of
dimensions r; X gy,..., r; X q,, respectively, we have

q AP
0= (g

X(1_0)(’141—011)*'"'+(’1‘Il‘a1) (26)



86 Fuller

where r, #¢; for i=1,2,..., /. Again the limit has been taken as both R and
Q become large.
Theorem 2. 1f 3, =3,, then im{N ~?»(Uy_ 5 )]=3Lim[N ~2»(Z, X
2}
Proof. Again consider the correspondence (o, 0,)->0, Ug, for (o}, 5,)
in (Z, XZH\(TL U 8,). If (0y, 6,) and (o], 0;) are both in (2, X Z,)\(TL U
Q,), and if 6,U0, =0;Ug;, then either (0,,0,)=(0;,0;) or (0,,0,)=
(63, 01). The correspondence is therefore two-for-one on (2, XZ )T, U
€2,) and the result follows as in the proof of Theorem 1.
The ensemble average per site for the occurrence of a structure =
twice simultaneously, once with occupancy a, and once with occupancy
a,, is therefore

e 5@ =3(22) (22 o em1-opreee{iml “2 N 2

When A is a rectangular array and 2 an rXgq (r#¢) rectangular structure
on A, the limiting average is

r r rg—oy ~—ay
pes(0)=2{ o )( 2 Jorre1—-0y

In particular, for the simultaneous occurrence of two-nearest neighbor
pairs (ny =2, a; =a, =2):
bs =(8)= 26*
Let 0,,...,0, be [ nonoverlapping, noncontiguous elements of 3. Un-
der the correspondence (oy,...,0;)>6,U - - Ug,, there are /! Ituples
which are mapped into the same image set. The correct generalization of

(2.6), therefore, to ! simultaneous occurrences of the structure = with
occupancies a;, ..., &; is

1(n 75\ e st
"“Z ,,,,, 2(0)=7.!_(a?)...(af)0 1+ +a;

X(1—g)r="a" _“’{lim]:%l“l (2.8)

When X is an rXgq rectangular structure on a rectangular array, (2.7)
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becomes

2 (rq AV rg—ay = —a
ps,s @)= 1 (o) (W )gerr v gy n (29)

3. CONCLUSION

The limiting behavior of the /-point ensemble expectations of the
number of simultaneous occurrences of / structures when indistinguishable
single particles are distributed on a lattice has been calculated in (2.5) and
(2.8). The expressions involve no restrictions on the lattice geometry.
Averages for various structures on specific geometrical arrays, such as
rectangular and hexagonal arrays, may be calculated directly from the
general results. »

It is also worth remarking that even though the lattice A has here been
taken to be two-dimensional, the method employed in calculating the
l-point expectations may be immediately generalized to lattices in higher
dimensions.
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